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Dynamics of dielectric breakdown paths

Jeffrey Boksiner* and P. L. Leath†

Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscatawa
New Jersey 08854-8019, USA

~Received 10 February 2003; published 27 June 2003!

We investigate the dynamics and geometry of dielectric breakdown paths of needle defects of arbitrary
residual resistivity in an otherwise homogeneous medium using a time-dependent electrical-circuit model. The
circuit model consists of a semi-infinite lattice of capacitors in parallel with resistors that break down to a
lower ~residual! resistance. The breakdown occurs if the local field across a resistor exceeds a critical value for
a breakdown delay time. We consider cases where the initial resistance is infinite or finite and where the
residual resistance is finite or zero. We consider the model for the case where the applied field reaches the
critical value adiabatically. We find that, as in the quasistatic case, the breakdown grows either one dimen-
sionally or spreads with a fractal dimension~bifurcates! depending on the values of residual resistance and
breakdown delay time. Also, we find that the propagation velocity of the needle oscillates spontaneously. We
give the phase diagram for bifurcation and oscillations. We derive a simplified recursive map approximation to
explain this behavior.
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I. INTRODUCTION

Nonlinear resistor and fuse networks provide realistic a
tractable models for understanding the geometry and stab
of dielectric breakdown and other breakdown phenom
@1,2#. The random-fuse network and an equivalent probl
in two dimensions, namely, the random nonlinear resis
network have been studied extensively@3–7#. The random
non-linear resistor model has been proposed as one o
models for dielectric breakdown@8#. Subsequent investiga
tions have explored various features of this model, includ
a complete description of phase behavior and breakd
paths where the broken bonds have nonzero resistivity~re-
sidual resistivity! @5,9#. There is a thorough review of vari
ous breakdown models in Ref.@10#.

The majority of the breakdown models are quasista
The review of Ref.@10# describes the available dynam
models. However, there have been a few studies that in
tigated the evolution of random-resistor networks with tim
varying fields. Since the dielectric breakdown of real ma
rials necessarily results in time-dependent fields as
breakdown progresses, it is important to understand the
ditions where the previous quasistatic models are approp
and where the time-dependence leads to important eff
that are not observed in the quasistatic model.

In this paper, we study breakdown with a time-depend
evolution of the local electric field. Previous works wi
breakdown in homogeneous or disordered media have sh
that for samples with dilute defects, the breakdown proc
begins at a critical defect in the network. The critical defe
for dielectric breakdown is often a long, thin defect—
needle directed along the applied electric field. Characte
tics of the breakdown process on a random lattice, includ
the breakdown field and the geometry of the breakdown c
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ter or the evolution of the breakdown path, often reflect
characteristics of the breakdown for a needle defect.

We are interested in understanding the evolution of
field, the oscillations that appear spontaneously, and
breakdown path as a function of the time constants and
residual resistivity. We examine the geometrical structure
the breakdown cluster in order to separate the aspects o
structure inherent in the growth of needles in homogene
media from those arising from random disorder in system
To perform our study, we have extended an algorithm, or
nally developed for the quasistatic problem, described in A
pendix A, that uses Green’s functions to compute the tim
dependent field due to a collection of defects in an infin
homogeneous medium exactly.

A. Breakdown model

Our simulation of the breakdown growth is a direct d
namical extension of the quasistatic random-resistor bre
down model@9#. We assume that defects cause variations
material conductivitys in an otherwise homogeneous mat
rial. The dynamical model is based on an electrical-circ
representation of the low-frequency limit of Maxwell equ
tions where inductive terms are neglected. The material
rameters are represented by the constitutive relations

D5eE, ~1a!

J5sE. ~1b!

Here, the conductivitys and the dielectric constante are
considered independent of frequency. From Maxwell eq
tions and the continuity equation, after neglecting all indu
tive terms, we arrive at the following equation:

“•$@ ive1s#“f%50, ~2!
©2003 The American Physical Society10-1
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wheref is the electrostatic potential. The discretization
Eq. ~2! on a square lattice leads to a lattice circuit of bon
where each bond comprises a parallel combination of a
sistor and a capacitor. The capacitors are identical throug
the lattice, whereas the resistors vary to represent local
ductivity @11,12#.

We assume that the lattice consists of two types of bon
those with initial ~prebreakdown! resistanceR̃ and capaci-
tanceC̃ and bonds with postbreakdown resistanceR̃b and
capacitanceC̃. The breakdown of resistorR̃ occurs if the
local field exceeds unity for a breakdown delay timeT̃b. The
breakdown delay timeT̃b represents the time it takes for
single element to fail. To reduce the number of independ
parameters, we now formulate the problem in terms of
mensionless parameters.

B. Rescaling of parameters

In calculations, the relevant dimensionless paramete
the ratio of the postbreakdown to the prebreakdown elem
impedance. The bond impedance before breakdown is (R̃

1sC̃)215R(11sC̃R̃)21 @13#, the impedance after break
down becomesR̃b(11sC̃R̃b)21. Therefore, the ratioG of
the postbreakdown to the prebreakdown bond impedanc
given by

G5
R̃b~11 s̃C̃R̃!

R̃~11 s̃C̃R̃b!
. ~3!

We note thats has units of 1/t and thatC̃R̃ is a time constant
of the lattice. So we use the following rescaling:

Rb5
R̃b

R̃
, ~4a!

s5 s̃R̃C̃, ~4b!

t5
t̃

R̃C̃
, ~4c!

and

Tb5
T̃b

R̃C̃
. ~4d!

This rescaling leads to the form

G5
Rb~11s!

~11sRb!
, ~5!

which corresponds to the impedance ratio for a circuit w
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unit resistance and capacitance before breakdown, as is i
trated in Fig. 1.

1. Zero residual resistance

In the limit of zero residual resistanceR̃b→0, the limit of
ratio G @in Eq. ~3!# is zero. Since in this limit the capacitanc
is irrelevant, this is the same limit as the limit forRb→0 in
the quasistatic case (C̃50) that we have discussed earli
@9#.

2. Infinite initial resistance

An important special case is the limit of infinite initia
resistanceR̃→`, which corresponds to breakdown in a m
dia of infinite initial resistivity such as vacuum or an ins
lating gas. In the limit of infinite initial resistanceR̃, the
rescaling in Eq.~4! fails. So we apply the limit directly to
Eq. ~3! to obtain

G5
s̃C̃R̃b

11 s̃C̃R̃b

, ~6!

which we rescale using the residual time constantR̃bC

s5 s̃R̃bC̃, ~7a!

FIG. 1. A section of a semi-infinite lattice of resistors and c
pacitors. The resistors break down and their resistance cha
from 1 toRb if the local electric fields on a bonde(t) exceeds unity
for a time longer than the breakdown delay timeTb
0-2
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t5
t̃

R̃b

C̃ , ~7b!

and

Tb5
T̃b

R̃bC̃
. ~7c!

The rescaled quantities in Eq.~7! correspond to a circuit with
unit capacitance and a breakdown resistance of unity
shown in Fig. 2.

In the quasistatic case, the ratioG is identical in the limits
of zero residual resistivity and infinite initial resistivity
Thus, the two limits are equivalent for the quasistatic ca
However, the introduction of time dependence breaks
symmetry leading to a different behavior for these two li
iting cases.

C. Time scales

The effect of the rescaling in Sec. I B is to reduce t
parameters of the lattice to dimensionless time scales. T
the case of infinite initial resistance has been parametrize
a single time scaleTb , the breakdown time delay. The ca
of finite initial resistance has been parametrized by two ti
scales, the breakdown time delayTb and the time constant o
the broken-down bondRb . Note that althoughRb is the res-
caled residual resistance, it is also the rescaled time con
RbC sinceC51 after rescaling. The limit of zero residua
resistance has no time scale and corresponds to an inst

FIG. 2. A section of a semi-infinite lattice of capacitors corr
sponding to a medium with infinite initial resistivity. In this cas
the capacitors break down and a resistance of 1 appears in s
with the capacitor if the local electric fields on a bonde(t) exceeds
unity for a time longer than the breakdown delay timeTb
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neous evolution of the fields. In subsequent sections, we
vestigate the behavior of needle defects as a function of th
time scales.

II. GENERAL RESULTS FOR NEEDLE DEFECTS

We investigate the growth of a needle defect, consist
of a line of defect bonds, aligned along the direction of t
applied fieldE in an otherwise homogeneous semi-infin
lattice. There are four independent parameters: the initial
fect length l 0, the magnitude of the applied fieldE, the
breakdown delay timeTb , and the residual resistanceRb of
the defect bonds and subsequent broken bonds. Figure
lustrates the parameters for a needle propagating throu
semi-infinite medium.

Our numerical simulation proceeds as follows. The init
needle of defect bonds along a vertical crystalline axis at
perfectly conducting busbar is prepared. A uniform elect
field is applied to the lattice along the vertical crystallin
axis. The field magnitude is determined by its value in
region far from the defects. The field increases adiabatica
that is, it varies very slowly in comparison to all other tim
constants of the system. During the entire breakdown p
cess, the field magnitude varies infinitesimally.

All bonds where the local field exceeds the critical fie
taken to be unity, for a critical delay timeTb break down,
becoming defects and changing their resistance from 1 toRb
irreversibly. The local fields are then recalculated as a fu
tion of time for the new configuration of defects and t
process is repeated.

We find that, depending on the parameters, the resul
needle growth exhibits a behavior that corresponds to on
the three phases of the breakdown process, namely, ins
ing, linear breakdown, or fractal breakdown, which we sh
discuss. If the applied field is too small to initiate brea
down, the lattice remains in the insulating phase~there is no
connected path of defects across the lattice!. As the field
increases, it reaches a critical value, which we shall call
initial breakdown fieldEbi , which initiates the breakdown
and causes the needle defect to start growing across the
tice. Subsequently, depending on the initial parameters,

ries

FIG. 3. An illustration of the parameters for a needle growi
on a semi-infinite lattice with an infinitely conducting busbar.
this example, the needle has lengthl 55 and began with a needl
defect of initial lengthl 052. The notations for the three fieldsei ,
e' , andei2 at the bonds near the needle tip that may break do
next are shown.
0-3
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FIG. 4. Growth of breakdown clusters in vacuum for four different breakdown delay timesTb on a semi-infinite lattice with an initial
defect of lengthl 051. The axesX andY denote the number of lattice spaces in each direction. The breakdown path consists of bon
break down at various times. For example, bonds in theY direction generally break down before the nearby bonds in theX direction.
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breakdown may grow linearly or with a fractal dimension.
addition, in some cases, oscillations in the breakdown p
cess appear spontaneously. We discuss different phase
stages of breakdown in Sec. II B below.

A. Breakdown field

As the field is applied, the local field is generally th
greatest at the tip of the needle~of length l 0) causing break-
down growth to begin there. This happens whenei(E)51
for longer thanTb . In the time-dependent case, the brea
down field depends on how the field is applied. If the field
ramped up slowly in comparison to all other time consta
of the lattice, then the breakdown field is the same as in
quasistatic case. In the quasistatic case, all transients
died out and the field distribution is determined by the ana
sis of the resistors only and is independent of capacitors
this case, we previously found@9#

ei'ES 1.132A2l 01
0.218

A2l 0
D , ~8a!

e''ES 0.8A2l 01
0.6

A2l 0
D . ~8b!
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Since the tip field increases asAl 0, the initial breakdown
field Ebi approaches zero asl 0

21/2. For needles of nonzero
residual resistivityRb , the tip fields saturates at a finit
asymptotic value. In all cases, the tip field increases w
needle length, so that once the needle begins to grow
cannot stop, i.e., the system is brittle. Thus, the final bre
down field is equal to the initial breakdown field, i.e.,Eb
5Ebi .

B. Breakdown path

We studied the path formed by the broken bonds. In
quasistatic case, the lattice can exist in three distinct sta
insulating, linear breakdown, or fractal breakdown. W
found a similar behavior in the time-dependent breakdow
although bifurcation into fractal breakdown is inhibited f
smallerTb and oscillations can appear in the breakdown p
cess.

The needle begins to grow atE5Ebi . At first, the growth
consists of elongation of the needle so that the defect
mains one dimensional~1D!, but for defects with low re-
sidual resistivity, the needle bifurcates as it grows long
growing fractally within a two-dimensional~2D! wedge. Fig-
ure 4 shows growth patterns for four different breakdo
delay timesTb . The slope of the graph in Fig. 5 gives th
fractal dimensionD of the patterns using the procedure
0-4
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DYNAMICS OF DIELECTRIC BREAKDOWN PATHS PHYSICAL REVIEW E67, 066610 ~2003!
counting the number of filled boxes at various length sca
@14,15#. The pattern starts linear but crosses over to frac
Excluding finite lattice effects, the four patterns tend to e
hibit a fractal dimensionD.1.7160.03. The fractal dimen-
sion in this case is consistent with that for the quasist
case whereD.1.72260.018@9#.

As Rb increases orTb decreases, the onset of the frac
~2D! growth occurs at longer needles and requires more
erations until, at a certain critical value of the residual res
tanceRb and the breakdown delay timeTb , the growth re-
mains purely one dimensional and the needle ne
bifurcates.

Although the breakdown paths for the quasistatic a
time-dependent simulation are similar, there are several
ferences. In the time-dependent case, the fractal sprea
does not start until a longer needle is realized. Also,
initial bifurcation for the time-dependent case involves v
tical bonds only, whereas in the quasistatic case it invol
the horizontal bonds. Note that Fig. 4 does not show
temporal order in which the bonds break down. The bifur
tion begins with vertical bonds in all the clusters shown.

To understand the behavior of needle defects and the
set of bifurcation, we analyzed needle propagation to inv
tigate the fields near the needle for various cases of in
and residual resistivity. Recall from Ref.@9# that propagation
of the needle in the quasistatic case proceeds in a sim
manner. The fields near the tip increase uniformly as
needle advances. As the tip fields increase, one or m
bonds at the tip of the needle break down for each step.
number of bonds breaking down in each step increases
formly. The tip fields and the number of bonds that bre
down in each step reach an asymptotic value for nonzeroRb
or increase without limit in accordance with Eq.~8! for zero
Rb .

FIG. 5. Graph of the logarithm of the number of occupied box
vs the logarithm of the total number of boxes covering a square
containing the breakdown cluster.l 0 is the size of the initial defec
in units of lattice spacing.Tb is the breakdown delay time.
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However, in the time-dependent case investigated h
the needle propagation exhibits a complex behavior that
fies such a simple description. We identified several pha
of the propagation using a numerical simulation of the tim
evolution of the fields. We describe the results of numeri
simulation of breakdown for lattices of infinite initial resis
tivity in Sec. III and the results for lattices of finite initia
resistivity in Sec. IV. We describe the algorithm used to co
pute these fields in Appendix A 1.

III. RESULTS FOR LATTICES OF INFINITE
INITIAL RESISTIVITY

The case of a lattice composed of bonds with infinite i
tial resistance~media with infinite initial resistivity! is an
important practical case and also provides us with the un
standing necessary for the case of nonzero initial resistiv
We assume that the applied field increases slowly in co
parison to all time constants of the system. As the fi
reaches unity, breakdown of the first bond at the tip occ
after a breakdown delay timeTb . The field then builds up on
the second bond. After the field reaches unity on this bon

s
ea

FIG. 6. The evolution of the tip fields of a needle as a functi
of time for variousTb andl 051. The time evolution is shown up to
the time of bifurcation, except forTb50 where bifurcation does no
occur.
0-5
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J. BOKSINER AND P. L. LEATH PHYSICAL REVIEW E67, 066610 ~2003!
the tip, breakdown occurs again after breakdown delayTb .
This process continues as the needle grows. If the valu
Tb is small, the field at the tip does not have time to incre
much beyond unity. However, the velocity of propagati
increases uniformly with needle length. IfTb is large, the
fields can reach their quasistatic values. However, as
needle propagates, more and more charge gets transfer
the bonds further away from the needle. The fields at th
bonds reach unity earlier, so that the delay for each s
becomes smaller thanTb . At this point, the needle sprint
through a section of the lattice. After several quick ste
through the lattice, the charge transferred ahead of the ne
is exhausted and a longer delay occurs. Thus, the velocit
needle propagation and the tip fields oscillate. We call t
phase high velocity propagation with oscillations. As t
needle propagates, the fieldei2 can reach unity also and re
main above unity sufficiently long to cause the needle

FIG. 7. The velocity of needle propagation, 1/ts( l ), as a func-
tion of needle lengthl for various breakdown delay timesTb and
initial needle lengthl 051. The horizontal dashed line represents
velocity equal to 1/Tb . The oscillations begin as this velocity i
reached. The velocity plot extends beyond the point of bifurcat
but the bifurcation has been inhibited in this simulation in order
view the velocity of the propagating needle. The vertical dot-das
line indicates where the onset of bifurcation would have been.
06661
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bifurcate. This initiates the ‘‘fractal’’ phase of needle growt
Figure 6 shows several examples of the time evolution

the tip fields. Large fluctuations in the field appear after ea
breakdown as the needle advances and the observation
where the tip fields are measured moves accordingly, cau
a discontinuity in the tip field. The interval between the d
continuous jumps on the figure is the duration of each nee
step which is the inverse of the velocity of needle propa
tion. We can see pronounced oscillations in the step du
tions and the terminal values of the tip field for each step
Tb5100 and less noticeable oscillations atTb510. Oscilla-
tions atTb52 occur also, but are not as obvious. Also, w
see that the fieldsei and e' show a greater discontinuity
compared toei2. The reason is thatei ande' receive their
greatest charge contribution from the end bond, whileei2
receives a small contribution from the end bond, since i
almost parallel to the dipole charge on the end bond. T
effect causes the bifurcation to be initiated entirely amo
bonds parallel to the direction of needle propagation. In
quasistatic case, bifurcation began at the perpendicular
bonds. However, in the time-dependent case, the effec
breakdown of the end bond is to reverse the field on
perpendicular bond. This effect onei2 is weak. Thus,ei2 can
remain above unity longer as the needle propagates pa
bond causing it to initiate the bifurcation.

Figures 7 and 8 show several examples of the needle

,

d

FIG. 8. The velocity of needle propagation, 1/ts( l ), as a func-
tion of needle lengthl for various breakdown delay timesTb and
initial needle lengthl 051. The horizontal dashed line represen
velocity equal to 1/Tb . The oscillations begin as this velocity i
reached. The needle is allowed to bifurcate. The vertical dot-das
line indicates where the onset of bifurcation occurs and gives
subsequent sudden broadening to a wider breakdown wedge.
0-6
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DYNAMICS OF DIELECTRIC BREAKDOWN PATHS PHYSICAL REVIEW E67, 066610 ~2003!
locity as it propagates. We define needle velocity as an
verse of the time duration of each stepts . Naively, we might
expect that the velocity cannot exceed 1/Tb , since a bond
has to wait for this time before it can break down. Howev
we see that the velocity increases uniformly until it reach
1/Tb ~the dotted line!. At this point, we can see the onset
high-velocity propagation and the velocity oscillations due
precharging effects. We observe that since the system is
mogeneous, these oscillations arise from the intrinsic pr
erties of needle propagation rather than from disorder in
system. Also, there is an increase in the period of oscillati
at the point of bifurcation. There are no oscillations wh
there is no breakdown delay atTb50.

The approach of the needles to the bifurcation length
be expressed succinctly by considering a ‘‘normalized ti
to breakdown,’’tb , which is the ratio of the time a poten
tially bifurcating bond spends at a local field greater th
unity ei2>1 to the breakdown delay time. This quantity h

FIG. 9. The normalized time to breakdown,tb , for a field at a
bond parallel to the needle tip as a function of needle lengthl and
breakdown delay timeTb for l 051. The corrugations are caused b
oscillations.

FIG. 10. The normalized time to breakdown,tb , for a field at a
bond parallel to the needle tip as a function of needle lengthl and
breakdown delay timeTb for l 053. The corrugations are caused b
oscillations.
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the virtue that bifurcation occurs if this quantity reach
unity, analogous to the local electric field in the quasista
case. The difference is that the quantity has a discontinu
derivative at zero due to the nonlinear nature of the unde
ing formula. The quantity becomes nonzero at a length c
sistent with our previous quasistatic results. Also,tb experi-
ences small oscillations as it increases due to the oscillat
in time steps. These oscillations lead to oscillations in
bifurcation phase diagrams. Figures 9 and 10 show thetb
surface. The oscillations intb appear as corrugations in th
surface.

Figure 11 shows the resulting phase diagram of nee
propagation at the initial critical field. The three phases
clear, but the complexity and the richness of the nee
propagation in the time-dependent problem is difficult to e
plain in simple terms. In the following section, we describe
simplified recursive map approximation that reproduces
essential qualitative behavior of the needle and allows u
understand the physical causes of this behavior.

Approximation using a recursive map

The complex behavior of the propagating needle in
time-dependent problem defies the very simple explana

FIG. 11. The phase diagram of different phases of needle gro
for three initial needle lengths. The phases are low-velocity nee
propagation, high velocity with oscillations, and bifurcation.
0-7



ro

om
ve
ed
op
di
an
i
d

ly

th
n
d

d
t
r
o
to

st

m

ol
e
e
ti

s

ea
a

its

th
e
s

n

d
m

e
for

ter
he
e

of
le,
tip

y
ns.

en-

of
dle
.
e is
is a

r
a

i-

if
d at

ion
atic

-

J. BOKSINER AND P. L. LEATH PHYSICAL REVIEW E67, 066610 ~2003!
available for the quasistatic model. In this section, we p
vide a simplified model to help explain this behavior.

Our model uses a recursive map approximation~RMA! to
evaluate the tip fields. This RMA uses the eigenvalue dec
position in Appendix A 1. To construct the RMA, we obser
the weight of the ground state eigenvalue as the ne
propagates. The ground state dominates if the needle pr
gates fast. The reason is that there is a limited time to
charge the needle bonds, so the charge is fairly uniform
similar to the ground state. If the breakdown delay time
very large and the needle propagates slowly, the charge
sipates completely at each step and appears as ad function at
the new tip bond after breakdown. We recall from the ana
sis of the eigenstates in Appendix A 1, that ad-function wave
packet decays approximately exponentially with time. In
intermediate propagation regime, the true needle state ca
approximated as some mixture of a ground state an
d-function at the tip.

Based on the foregoing observations, we constructe
summation using the results from the quasistatic case for
field enhancement multiplied by exponential decay facto
We use two decay factors, one for the ground state and
for the d function at the tip. We use a simple expression
estimate the weight of the ground state and assign the re
the charge to thed function at the tip. This approximation
qualitatively describes the effects we have seen in the si
lations.

Using this decomposition, we construct the RMA as f
lows. Let us assume that we are interested in a tip fi
ei ,l(t) of a needle of lengthl from the moment the needl
reaches this length until subsequent breakdown at this
Before the needle becomesl bonds long, it must progres
through lengthsl 0 through l. We will label each of these
intermediate needle lengths byk, l 0<k< l . The time interval
between the breakdown that caused the needle to r
length k and the breakdown that causes the needle to re
lengthk11 is Tk , i.e., the needle spends a timeTk at length
k. The state of the needle of lengthk, at any timet, is de-
scribed completely by the local electric field at each of
bonds that we will label by the indexj, 1< j <k. For a lattice
of capacitors, the local field is equal to the charge on
capacitor at the bondqj , so we can write the full state of th
needle of length k, using the bra-ket notation, a
uq1•••qk&(t).

The tip bond for a needle of lengthl is at position (x,y)
5(0,l 11). It does not have a significance as the tip bo
though, until the needle reaches lengthl. As the needle
propagates toward lengthl, this tip fielde0,l ,i receives current
and hence field contribution from each stage of the nee
growth. In principle, the field can be expressed as a sum
tion of contributions of each needle stage

e0,l 11,i5E01 (
k51

l

Z@ uq1•••qk&~ t !,l 11,tk], ~9!

where tk5(p51
k Tp , and Z is a numerically computable

function relating a particular state of the needleuq1•••qk& of
length k to its field contribution at a bond at point (0,l ). If
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the functionZ and the time evolution of the voltages of th
needle state were known, it would be possible to solve
e0,l 11 that becomesei ,l(t) oncek5 l . Then we could find the
time when this field has exceeded unity for a period grea
thanTb , thus initiating the next breakdown and causing t
needle to reach the lengthl 11. As the needle reaches th
length l 11, the chargeql 11 is equal to the tip field
ei ,l(t l 11). Thus, the complete state of the new needle
length l 11 is known from the state of the previous need
just at the moment of breakdown and the value of the
field. This can be expressed by a recursive map

$uq1•••ql 11&~0!, Tl 11%←$uq1•••qk&~0!, Tk%k51, . . . ,l .
~10!

The recursive map in Eq.~10! can be evaluated exactly b
expressing a needle state in orthogonal eigenfunctio
Appendix A describes an algorithm to compute the eig
functions and the electric-field enhancement functionZ.
Another useful representation of each state is in terms
‘‘ d-function’’ states where each state consists of a nee
having a unit charge on bondk and zero charge elsewhere

To complete our RMA, we assume that the needle stat
a superposition of two nonorthogonal states. One state
state of uniform charge distribution on a needle of lengthk
denoted by uk,0&, which approximates the lowest-orde
~ground! eigenstate. The other state is a state with
d-function charge distribution at the tip denoted byuk,1&,
where the charge is unity at the tip and zero elsewhere.

The lowest-order state decays as exp(2a1t) with a1 given
by Eq. ~B3! and coefficients of Table I as21/a1(k)
50.77711.724k. The tip d-function state decays approx
mately as exp@2tu(k)/t#, with t'2.75 and u(k)'0.8
10.2k22 according to Fig. 24. As shown in the Appendix,
the charge decays exponentially from the needle, the fiel
any other bond increases exponentially proportional to„1
2exp@2a1(k)t#… for stateuk,0& and as@12exp(2tu(k)/t)# for
stateuk,1&.

We can calculate the electric-field enhancement funct
Z for these two states from the analysis of the quasist
cases reported in Ref.@9#. For both states,Z(uk,0&,n) is

TABLE I. Coefficients for a linear approximation to time con
stants21/ap for the first ten eigenvalues.

p ap bp

1 0.777 1.724
2 0.433 0.457
3 0.446 0.261
4 0.489 0.180
5 0.535 0.136
6 0.578 0.108
7 0.618 0.089
8 0.655 0.075
9 0.689 0.065

10 0.720 0.056
0-8
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DYNAMICS OF DIELECTRIC BREAKDOWN PATHS PHYSICAL REVIEW E67, 066610 ~2003!
simply the differential quasistatic field enhancement fo
needle of lengthl on a resistive lattice. Thus, the field b
comes

e0,l 11~ t !5E01 (
k51

l

g0~k!Z~ uk,0&,l 11)

3$12exp@2a1~ t2tk!#%

1 (
k51

l

g1~k!Z~ uk,1&,l 11)

3$12exp@2~ t2tk!/t#%, ~11!

whereg0 and g1 are the weights of the two states, respe
tively. We approximate the weights by an average of
charges over all bonds as follows:

x5
@ei ,k212ei ,k22exp~2Tb /t!#

ei ,k21
, ~12a!

FIG. 12. A comparison of the tip fieldei(t) predicted by the
calculation using the Green’s function algorithm~solid lines! and
the RMA ~dashed lines! for three different delay timesTb and l 0

51.
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g0512x1
x

k21
, ~12b!

and

g1512g0 . ~12c!

Figure 12 shows the comparison of the tip field betwe
the simulation using the essentially exact calculation us
the Green’s function algorithm and the RMA. The figur
show that the agreement is especially good at limiting val
of Tb where the charge distribution is nearly uniform
nearly ad function. The agreement is less good at interm
diate values ofTb where other charge distributions contrib
ute. The same calculation also predicts the other tip fie
Thus, the RMA predicts the onset of bifurcation as well
other complex needle behaviors. Figure 13 shows the c
parison of the RMA against the Green’s function simulati
for calculation of the bifurcation phase diagram. There i
qualitative agreement, although there is a small differenc
the bifurcation length.

IV. RESULTS FOR LATTICES OF FINITE
INITIAL RESISTIVITY

We extend the results of Sec. III to the lattice model w
bonds having a finite initial resistance shown in Fig. 1. W
derive the Green’s function algorithm in Appendix A 3, an
show in the Appendix that the field evolves as in the case
infinite initial resistivity, except that the relevant time co
stantsbp are given by

bp5
ap~12Rb!1Rb

Rb
. ~13!

For smallRb , we havebp'ap /Rb . In Fig. 14, we plot
from the numerical simulations the time evolution of the

FIG. 13. A comparison of the onset of bifurcation as a functi
of Tb for l 051 as given by the calculation using the Green’s fun
tion algorithm~upper curve! and the RMA~lower curve!.
0-9
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J. BOKSINER AND P. L. LEATH PHYSICAL REVIEW E67, 066610 ~2003!
fields at limiting values ofTb50 andTb5100Rb for various
Rb . The horizontal axis is the ratio of time overRb . The
scaling withRb is seen in these graphs for smallRb . If we
defineTb85Tb /Rb asRb8→0, the system with a finite initia
resistivity behaves like the system with infinite initial res
tivity with an breakdown delay timeTb8 .

As Rb increases, the quasistatic field enhancement
creases as described in Ref.@9#. This effect causes the sca
ing to fail because the charge ahead of the needle tip doe
build up as quickly. Reference@9# shows that eventually the
bifurcation is suppressed in the quasistatic case. A sim
suppression of bifurcation occurs in the time-dependent c
We see from Fig. 14, which givesei vs time from the simu-
lations, that the bifurcation length increases and then the
furcation ceases to occur for the lengths studied. The os
lations remain, but become regular as the model settles in
limit cycle.

FIG. 14. The evolution of the parallel tip fieldei of a needle as
a function of time for variousRb , for Tb50 or Tb5100Rb , and for
l 051 as given by the simulations. The time evolution is plotted
to the time of bifurcation, except forTb50 andRb>0.04~top three
curves! where bifurcation does not occur. The horizontal axis is
ratio of time toRb .
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We can see the oscillations clearly by plotting the spe
of the needle propagation as a function of needle length
shown in Figs. 15–17.

As we did for infinite initial resistivity, we can construc
phase diagrams for differentTb . Figure 18 shows phase dia
grams for severalRb . We can see that while all cases exhib
oscillations, the bifurcation phase does not appear at s
ciently highRb .

We studied the lengthl bi that the needles reaches prior
the bifurcation for largeTb as a function ofRb for the first
three initial needle lengthsl 0. Figure 19 shows the results
This curve is similar to the curve ofl bi vs l 0 for the quasi-
static case of Ref.@9#. However, the curve was based o
bifurcation at the perpendicular adjacent bond. As we
plained in Sec. III, the bifurcation in the time-dependent ca
occurs on the adjacent parallel bonds. Thus, we computel bi

e

FIG. 15. The velocity of needle propagation, 1/ts( l ), as a func-
tion of needle lengthl for various residual resistancesRb at Tb

52Rb and initial needle lengthl 051 from the simulations. The
horizontal dashed line represents a velocity equal to 1/Tb . The os-
cillations begin as this velocity is reached. The vertical dotte
dashed line indicates where the onset of bifurcation would h
been. The velocity plot extends beyond the point of bifurcation,
the bifurcation has been inhibited in this simulation in order to vi
the velocity of the propagating needle.
0-10
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DYNAMICS OF DIELECTRIC BREAKDOWN PATHS PHYSICAL REVIEW E67, 066610 ~2003!
vs Rb for the quasistatic case for bifurcation on the para
bond. Figure 19 shows this result as well.

We observe that asRb approaches a critical valueRbi` , l bi
diverges for both quasistatic and time-dependent cases
fit these data points to a power law of the form

l bi5~Rbi`2Rb!2a. ~14!

The quasistatic curves approach the critical values with
ponent a'0.8260.01. The critical valuesRbi` are 0.13,
0.06, and 0.039 forl 0 of 1, 2, and 3, respectively. The time
dependent points approach the critical values with expon
a'0.8860.01. The critical valuesRbi` are'0.047, 0.023,

FIG. 16. The velocity of needle propagation, 1/ts( l ) as a func-
tion of needle lengthl for various residual resistancesRb at Tb

510Rb and initial needle lengthl 051. The horizontal dashed line
represents a velocity equal to 1/Tb . The oscillations begin as thi
velocity is reached. The vertical dot-dashed line indicates where
onset of bifurcation would have been. The velocity plot exten
beyond the point of bifurcation, but the bifurcation has been inh
ited in this simulation in order to view the velocity of the propag
ing needle.
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and 0.015. Figure 19 shows these power-law lines also.
resulting fits are good in the limit of largeTb .

V. CONCLUSION

We investigated the time evolution and geometry
breakdown paths in time-dependent networks of capaci
and resistors under slowly increasing external fields. We
vestigated two classes of lattices, lattices with an eleme
with infinite initial resistance~purely capacitive lattices be
fore breakdown! and lattices with elements having a fini
initial resistance. For the lattices with infinite initial resi
tance, the speed of breakdown can be represented by a s
time scale which we call the breakdown time delay. For l
tices with both capacitors and resistors before breakdo
there are two relevant time scales, namely, the breakd

e
s
-

FIG. 17. The velocity of needle propagation, 1/ts( l ) as a func-
tion of needle lengthl for various residual resistancesRb at Tb

5100Rb and initial needle lengthl 051. The horizontal dashed line
represents a velocity equal to 1/Tb . The oscillations begin as this
velocity is reached. The vertical dot-dashed line indicates where
onset of bifurcation would have been. The velocity plot exten
beyond the point of bifurcation, but the bifurcation has been inh
ited in this simulation in order to view the velocity of the propaga
ing needle.
0-11
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J. BOKSINER AND P. L. LEATH PHYSICAL REVIEW E67, 066610 ~2003!
time delay and the time constant of the bond after bre
down.

We observe that if the local breakdown is slow compa
to the evolution of the local field, there is a qualitative agre
ment with the results of the quasistatic case. If the lo
breakdown is rapid, the system never reaches the quasis
situation.

Unlike the quasistatic case where the velocity of def
propagation increases monotonically with needle length
to the increase in the local tip field, the dynamical mod
indicates the onset of oscillations as fields build up and
lease. The oscillations that spontaneously occur are rem
cent of those that occur in the brittle fracture@16–18#.

The behavior of this model is rich and there are seve
promising areas for further study. One such area is the in
poration of a more realistic model for variable time to brea
down as a function of local field-based physics of bre
down.

Another interesting possibility arises from the fact tha
disordered lattice exhibits frequency-dependent conducti
even though all local properties are frequency independ
@11#. Since the dielectric strength of the lattice depends
the amount of disorder, there is an intriguing possibility th

FIG. 18. The phase diagram of a different phase of nee
growth for l 051 and severalTb . The phases are low velocity, hig
velocity with subsequent oscillations, and bifurcation.
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dielectric strength of a material may be inferred in a non
structive way from the frequency behavior of the materia

APPENDIX A: ALGORITHM

1. General formulation

We wish to calculate the electric field due ton defect
bonds, labeled 1 throughn, in an otherwise uniform, infinite,
perfect square lattice. The basis for the algorithm used
calculate the time evolution of the fields is the algorithm th
has been used previously to determine the field distribu
for a resistive lattice with defects. The basis for both alg
rithms is the Green’s function solution for the potential d
to a constant unit current source into a site of an infin
square lattice of resistors. We show the development of
algorithm, repeating certain steps used to develop the ea
algorithm for the purely resistive lattice.

le FIG. 19. Needle length at bifurcationl bi as a function ofRb at
three values of the initial needle lengthl 0 for a quasistatic case with
bifurcation at an adjacent parallel bond~lower curve!, and l bi as a
function ofRb for a time-dependent case atTb5100Rb . The length
l 0 and l bi are in units of lattice spacing. The discrete points on
plot are from the simulations and the solid lines are power-l
approximations with exponents of 0.8260.01 for the quasistatic
case and 0.8860.01 for for the time-dependent case. The dash
lines are the critical values wherel bi→` for each curve.
0-12
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FIG. 20. The infinite lattice network of capacitors withn defect bonds~a!, the equivalentn-port network~b!, and an explicit represen
tation of an equivalent single-port network~c!.
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The main consideration for the development of the al
rithm is to treat the lattice in the frequency~Laplace-
transform! domain. This allows us to view bonds as impe
ances and to manipulate them in a manner analogous to
used previously for the purely resistive lattice.

Consider the impedance of each defect bond. We can
sider each defect impedance as comprising a parallel co
nation of the lattice impedanceZ and an additional resistanc
selected so their parallel combination equalsZb . Also, we
can consider each nearest-neighbor node~site! pair of the
perfect lattice as terminals of an arbitrary two-terminal line
passive electromagnetic system that can be represented
equivalent linear electrical circuit. We call such pair of te
minals a port. Thus, we can associate a port with each b
As the lattice consists of resistors and capacitors that
linear in fields, the equivalentn-port circuit is linear in fields
and obeys the superposition principle. If there are defect
the lattice, we represent them as resistors connected to
ports corresponding to the defect bonds. In addition, th
are transients due to initial conditions across the capacit
It is possible to represent an initial voltagev(02) across a
capacitorC in the Laplace domain as current sources of v
uesCv(02) in parallel with the capacitor. Thus, we place
current source at each port of the equivalent circuit to rep
sent the initial conditions. If the effect of transients and d
fects is represented by external elements, the open-ci
voltage at each port is equal to the applied fieldEW (s) by
symmetry. For a field applied along the vertical directio
the port voltageEj is zero for a port at a horizontal bond an
equal toE(t) for a port corresponding to a vertical bond.

Thus, the voltage of ann-port circuit can be calculated b
a linear superposition of voltages produced by the curr
into each porti k with proportionality constantZjk and the
open-circuit voltage at each portej ,

ej~s!5Ej~s!1 (
k51

k5n

@ i k~s!1Ak#Zjk~s! ~A1!
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or in matrix form

e~s!5E~s!1@ i~s!1A#Z̄th~s!, ~A2!

whereA is a vector of constants chosen to obtain the corr
initial open-circuit voltage value.

In electrical-circuit theory,E(s) and Z(s) are known as
Thévenin equivalent voltages and impedances. Also,Zjk are
called the driving-point and transfer impedances, they
equal to the voltage developed at portj when a unit current
source is applied to portk.

The impedance can be found by calculating the volta
due to two unit current sources of opposite polarity attach
at the nodes, namely, a dipole source. The solution for
impedance matrix for a lattice of unit resistors, which we c
Watson’s matrix,Ā, was developed in a previous work@9#
based on the Green’s function calculation of voltage due
unit current source for a perfect square lattice network
Watson@19#. A calculation similar to that of Watson with a
generalization tod d imensions has been shown in Ref.@20#.

2. Formulation with infinite initial resistance

In the case of infinite initial resistance, the impedance
an unbroken bond is 1/s. A parallel resistanceRb51 is
added to create breakdown. Impedances can be treate
resistances, and an equivalent circuit can be constructed
the lattice. Figure 20 shows the lattice and the equival
n-port circuit. This figure also shows an example of a sing
port circuit with explicit representation for the equivale
elements. The equivalentn-port circuit with the external cur-
rent sources that represent initial conditions has the term
voltage-current relationship given by

e~s!5E~s!1@ i~s!1A#S 1

s
ĀD . ~A3!
0-13
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J. BOKSINER AND P. L. LEATH PHYSICAL REVIEW E67, 066610 ~2003!
Solving for the current

se~s!5sE~s!1@ i~s!1A#Ā ~A4!

or, equivalently,

d

dt
e~ t !5

d

dt
E~ t !1@ i~ t !1Ad~ t !#Ā, ~A5!

whered(t) is the Dirac-delta function.
When breakdown occurs, a parallel resistance of un

appears in parallel with the port of the circuit. The voltag
current relationship for the resistance in the time domain

e~ t !52 i~ t !. ~A6!

Thus, we obtain an overall equation

2
d

dt
i~ t !5

d

dt
E~ t !1Ā@ i~ t !1Ad~ t !#. ~A7!

The formal solution is

i~ t !52exp~2Āt !E
2`

t F d

dp
E~p!1Ad~p!Gexp~Āp!dp

52exp~2Āt !E
2`

t d

dp
E~p!exp~Āp!dp1Aexp~2Āt !.

~A8!

We assume that breakdown occurs att50. Equation~A8!
is valid for the circuit after breakdown only. This corre
sponds to viewing the fieldE(t) as being turned on att
50. If the applied field is constant, the source terms beco

E~ t !5EU~ t !, ~A9a!

d

dt
E~ t !5Ed~ t !, ~A9b!

whereU(t) is the Heaviside step function. Then, the soluti
becomes

i~ t !5Eexp~2Āt !1Aexp~2Āt !. ~A10!

If we let i0 be the vector of initial currents, we can expre
the solution as

i~ t !5 i0exp~2Āt !. ~A11!

This expression allows us to express the current evolu
entirely in terms of the initial current, which is equal to th
06661
y
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e

n

initial voltage across the bond. This compact expression
possible only for the network with an infinite initial resis
tance.

Again, the resulting current divides among the lattice
ements just as in the resistive case. The fielde ~as well as the
voltage! at the capacitor of bondk is the sum of the time
integral of the current into the elementi k and the initial
voltage into the elementek(0),

ek~ t !5E
0

t

i k~ t8!dt81ek~0!. ~A12!

At the moment of the first breakdown, the initial field is ju
the applied field so thatek(0)5E.

We will label by ajk the fraction of the current driven by
sourcej into the bondk. The total current into a bond is
sum of contribution of the fraction for each defect, so t
field is

ek~ t !5(
j 51

n E
0

t

ajki j~ t8!dt81ek~0!. ~A13!

We separate the field at each bond into the vector compo
of the applied fieldE(t), and the enhancement field due
the defects in the lattice. The enhancement field is given
the summation overn defect bonds in Eq.~A13!. This equa-
tion shows that the enhancement field is zero if the app
field is constant. Any enhancement results from the ini
charge configuration and the time evolution of the appl
field, for example, the adiabatic increase in the field to re
a constant value.

3. Formulation with finite initial resistance

Consider the impedance of a defect bond. We can c
sider it as a parallel combination of the lattice impedancZ
and an effective resistanceR8, as shown in Fig. 21. The
lattice impedanceZ is a parallel combination of unit capac
tance and unit resistance,

Z~s!5
1

11s
. ~A14!

We select the effective resistanceR8 so that its parallel com-
bination with unit resistance isRb ,

R85
Rb

12Rb
. ~A15!

Thus, the impedance matrix is given byZ̄(s)5Z(s)Ā
5Ā/(11s).

We combine all the terms to obtain

e~s!5E~s!1@ i~s!1A#S 1

11s
ĀD . ~A16!
0-14
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FIG. 21. The infinite lattice network of impedances withn defect bonds~a!, the equivalentn-port network~b!, and an explicit represen
tation of an equivalent single-port network~c!.
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Solving for the current, we find

~11s!e~s!5~11s!E~s!1@ i~s!1A#Ā. ~A17!

We transform back to time domain to obtain the different
equation

S 11
d

dtDe~ t !5S 11
d

dtDE~ t !1@ i~ t !1Ad~ t !#Ā.

~A18!

When breakdown occurs, a parallel impedanceR8 is at-
tached to the port of the equivalent circuit. Its voltag
current relationship is given by Ohm’s law

e~ t !52R8i~ t !. ~A19!

Thus, we obtain

2R8
d

dt
i~ t !5S 11

d

dtDE~ t !1~Ā1R8 Ī !i~ t !1ĀAd~ t !.

~A20!

We define the matrixB̄ as

B̄5
Ā1R8 Ī

R8
. ~A21!

Then, the equation for the current can be expressed
matrix differential equation
06661
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2
d

dt
i~ t !5

1

R8
FE~ t !1

d

dt
E~ t !1ĀAd~ t !G1B̄i~ t !.

~A22!

We defineA85(Ā/R8)A . Then, the formal solution for
this system is

i~ t !52exp~2B̄t !E
2`

t

exp~B̄p!FE~p!1
d

dp
E~p!Gdp

R8

1A8exp~B̄t !. ~A23!

We let i0 be the vector of initial conditions. In the speci
case that the applied field is constant,E(t)5U(t)E, the so-
lution is

i~ t !52~Ā1R8 Ī !21F Ī1
Āexp~2B̄t !

R8
GE

1S E

R8
2 i0D exp~B̄t !. ~A24!

We note that the initial currenti 0 is equal to the open-circui
voltage at the time of breakdowneoc(0) divided by the ad-
ditional resistanceR8. The open-circuit voltage canno
change discontinuously because it is a voltage across a
pacitor, while the current through the additional resistors c
jump abruptly. We can simplify Eq.~A24! to obtain

i~ t !52@ Ī2exp~2B̄t !#~Ā1R8 Ī !21E2
eoc~0!

R8
exp~B̄t !.

~A25!
0-15
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FIG. 22. Eigenvectorsun,p& and their associated time constants 1/ap for needles of up to six bonds.
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This expression has the expected form of a sum o
steady-state solution that is identical to the solution obtai
for the resistive case@9#, a transient solution, and a decayin
term due to initial conditions.

The resulting current divides among the lattice eleme
just as in the resistive case. The local field is the volta
across each resistor, which is equal to the current thro
each resistor.

The differential equation for each circuit element is

e~ t !1
d

dt
e~ t !5 i ~ t !, ~A26!

wheree(t) is the field across the bond. Its transform is

e~s!5 i ~s!
1

11s
1

1

11s
e0 . ~A27!

Thus, the solution for the node voltage becomes

e5E~ t !1E
0

t

i ~ t8!exp~2t1t8!dt81@e02E~0!#exp~2t !.

~A28!

APPENDIX B: THE STRUCTURE OF TIME-DEPENDENT
SOLUTIONS FOR A NEEDLE DEFECT

Understanding the fields arising from a needle is imp
tant for understanding the initiation of breakdown. We d
06661
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rived expressions for time-dependent solutions in App
dixes A 1 and A 2. These expressions involve exponentia
of matrices and can be evaluated by various techniques.
approach that provides considerable insight into the natur
the solution is the eigenvalue decomposition.

1. Infinite initial resistance

First, we look at the solution with infinite initial resis
tance. The numerical procedure for calculating Watson’s m
trix Ā is given in Ref.@9#. To understand the behavior of th
solution, we express the initial state of fields across e
needle bondun&(t50), wheren is the needle length, as
sum of eigenvectorsun,p& of Ā, wherep51, . . . ,n. Note
that the field across a bond is a state variable, i.e., it can
change instantaneously. Each eigenvector has a corresp
ing eigenvalue2ap . The initial current across each bond
equal to the initial voltage and the initial charge, since bo
the capacitance and parallel resistance are equal to u
Thus, we can consider each eigenvalue as belonging
state with a lifetime 1/ap .

Once the eigenvalues are determined, the time evolu
of charges on the needle depends on the initial conditi
and their decomposition into the eigenvectors. LetCp be the
weight Cp5^n,pun&(t50) of each eigenvectorun,p& in a
particular initial stateun&(t50). Then Eq.~A11! decom-
poses as

i~ t !5un&~ t !5 (
p51

n

Cpun,p&exp~2apt !. ~B1!
0-16
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The final result for the enhancement field becomes

ek~ t !5(
j 51

n E
2`

t

ajk (
p51

n

Cpxp jexp~2apt8!dt8

5(
j 51

n

(
p51

n
12exp~2apt !

ap
ajkCpxp j , ~B2!

wherexp j is the elementj of the eigenvectorun,p&. Note that
parameters in this equation can be calculated from Wats
coefficients for the resistive lattice.

The eigenvectorsun,p& can be arranged in the order o
decreasing eigenvalues or, equivalently, in the order of
creasing time constant 1/ap . Figure 22 shows the set o
complete eigenvalues and eigenvectors for short needles
most symmetrical longest wavelength eigenvectors have
largest time constant. Figure 23 shows the dependence o
time constant on the needle length. The plot shows that
time constant is linearly proportional to the needle lengthl:

1/ap~ l !5ap1bpl . ~B3!

Table I shows the values of these coefficients for the first
eigenvalues.

Dependence on the initial conditions

The coefficientsCp depend on initial conditions. Two im
portant limiting cases are a uniform initial charge distributi
or a d function distribution where the last bond has u
charge and all other charges are zero. We consider thd
function distribution in detail.

The tip fields produced by thed functions can be com
puted by expanding thed function in terms of the eigenvec
tors and computing the resulting field dependence. Figure
shows the time dependence of the field for the increas
needle length. We try to approximate this behavior

FIG. 23. Time constants 1/ap for eigenvalues of a given orde
vs needle length.
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v( l )@12exp(2tu(l)/t)#. The coefficientv( l ) is the asymptotic
field enhancement. It is equal to the value obtained for
quasistatic case for a single defect on a semi-infinite latt
Thus, it takes on its largest value 0.5 forl 51 and approaches
0.36 for largel. The time constantt is 2.75 forl 51 from our
calculations of eigenvectors with results shown in Fig. 2
We notice that asl increases, the time variation of the ti
field flattens. This is likely due to the asymptotic behavior
the eigenvalues for long needles that are likely to domin
the behavior ofd functions. The deviation from exponentia
behavior is likely due to a few long-lived low-order state
We approximate this as a power law in the exponent
u( l )'0.810.2l 22, with the exponent dependence obtain
from a curve fit. The resulting approximation in the form

ei5S 0.361
0.14

Al
D 3H 12expF2

t (0.810.2/l 2)

2.75
G J ~B4!

fits the calculated values well as can be seen in Fig. 24.

2. Nonzero residual resistivity

The solution for nonzero residual resistivity, given in E
~A25!, consists of a homogeneous part that is identical to
solution for the resistive case, and a transient part that h
form similar to that for a time-dependent case of the z
residual resistivity. If we focus on the transient part, we c
apply the eigenvalue decomposition as we did in Append
We attempt to use properties of the matrixĀ to illuminate
the properties of the matrixB̄.

We recall thatB̄5(Ā1R8 Ī )/R8. We label eigenvalues o
B̄ by bp and the corresponding eigenvectors byun,p& with
the dependence onRb implicit. From the definition of eigen-

FIG. 24. The time evolution of the tip fieldei for a needle of
length 1> l>43 with an initial charge of unity on the last bond an
no charge on the remainder of the needle (d-function response!.
The discrete points represent the calculation using the expansio
eigenvectors computed with the Green’s function algorithm@Eq.
~B2!#. The surface hatched with solid lines is the closed-form
proximation~Eq. ~B4!#.
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valuesB̄2b Ī50, we see thatap5R81bpR8, so that

bp5
ap1R8

R8
. ~B5!

The eigenvectors corresponding to each eigenvalue are
same as for the case of infinite initial resistivity.

We determine the time evolution as in the case of infin
initial resistivity. We note that the state (Ā1R8 Ī )21E is the
state ast approaches̀ , which is also a solution of the qua
sistatic~purely resistive! case. We label this state byun&(`).
Equation~A25! decomposes as

i~ t !5 (
p51

n

Dpun,p&@12exp~2bpt !#

1 (
p51

n

Cpun,p&exp~2bpt !, ~B6!

where the coefficients areCp5^n,pun&(0), and Dp
5^n,pun&(`). The final result for the enhancement field b
comes
06661
the

e

-

ek~ t !5ek~0!exp~2t !

1(
j 51

n

(
p51

n

ajkCpxp j

exp~2t !2exp~2bpt !

bp21

1(
j 51

n

(
p51

n

ajkDpxp jF11
exp~2bpt !2bpexp~2t !

bp21 G ,
~B7!

wherexp j is the elementj of the eigenvectorun,p&. Again,
parameters in this equation can be calculated from Wats
coefficients for the resistive lattice. Also, this equation sho
that all transient fields decay eventually leaving only t
steady-state solution~resistive lattice!.

In the limiting case of zero residual resistivity,bp→` so
that the enhancement field becomes

ek~ t !5eoc~ t !1ek~0!exp~2t !2(
j 51

n

ajk

3~^n, j uĀ21eocun, j &!@12exp~2t !#. ~B8!
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