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Dynamics of dielectric breakdown paths
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We investigate the dynamics and geometry of dielectric breakdown paths of needle defects of arbitrary
residual resistivity in an otherwise homogeneous medium using a time-dependent electrical-circuit model. The
circuit model consists of a semi-infinite lattice of capacitors in parallel with resistors that break down to a
lower (residua) resistance. The breakdown occurs if the local field across a resistor exceeds a critical value for
a breakdown delay time. We consider cases where the initial resistance is infinite or finite and where the
residual resistance is finite or zero. We consider the model for the case where the applied field reaches the
critical value adiabatically. We find that, as in the quasistatic case, the breakdown grows either one dimen-
sionally or spreads with a fractal dimensi@nifurcate$ depending on the values of residual resistance and
breakdown delay time. Also, we find that the propagation velocity of the needle oscillates spontaneously. We
give the phase diagram for bifurcation and oscillations. We derive a simplified recursive map approximation to
explain this behavior.
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[. INTRODUCTION ter or the evolution of the breakdown path, often reflect the
characteristics of the breakdown for a needle defect.

Nonlinear resistor and fuse networks provide realistic and We are interested in understanding the evolution of the
tractable models for understanding the geometry and stabilitfield, the oscillations that appear spontaneously, and the
of dielectric breakdown and other breakdown phenomen&reakdown path as a function of the time constants and the
[1,2]. The random-fuse network and an equivalent problenf€sidual resistivity. We examine the geometrical structure of
in two dimensions, namely, the random nonlinear resistofhe breakdown cluster in order to separate the aspects of the
network have been studied extensivgB~7]. The random structure inherent in the growth of needles in homogeneous
non-linear resistor model has been proposed as one of tHgedia from those arising from random disorder in systems.
models for dielectric breakdowf8]. Subsequent investiga- To perform our study, we have extended an algorithm, origi-
tions have explored various features of this model, includingi@lly developed for the quasistatic problem, described in Ap-
a complete description of phase behavior and breakdowRendix A, that uses Green’s functions to compute the time-
paths where the broken bonds have nonzero resistivity ~dependent field due to a collection of defects in an infinite
sidual resistivity [5,9]. There is a thorough review of vari- homogeneous medium exactly.
ous breakdown models in RéfL0].

The majority of the breakdown models are quasistatic. A. Breakdown model
The review of Ref.[10] describes the available dynamic . . . .
models. However, there have been a few studies t%at inves- Qur S|mulat|9n of the breakdown growth is a _dlrect dy-
tigated the evolution of random-resistor networks with time-namical extension of the quasistatic random-resistor break-
varying fields. Since the dielectric breakdown of real mate-dOWn .model[g]. \.N.e assume that dgfects cause variations in
rials necessarily results in time-dependent fields as thawatenal conductivityr in an otherwise homogeneous mate-

breakdown progresses, it is important to understand the coﬁ'—al' The tdi/.nam'fc‘;! mlode][ is based I?”,ta”f t:/llectrlcialll—cwcwt
ditions where the previous quasistatic models are appropria gpresentation ot the low-irequency limit of Viaxwell equa-
lons where inductive terms are neglected. The material pa-

and where the time-dependence leads to important effec e .
that are not observed in the quasistatic model. rameters are represented by the constitutive relations

In this paper, we study breakdown with a time-dependent
evolution of the local electric field. Previous works with D= €E, (1a
breakdown in homogeneous or disordered media have shown
that for samples with dilute defects, the breakdown process
begins at a critical defect in the network. The critical defect J=0E. (1b)
for dielectric breakdown is often a long, thin defect—a
needle directed along the applied electric field. Characterisiere, the conductivityr and the dielectric constant are
tics of the breakdown process on a random lattice, includingonsidered independent of frequency. From Maxwell equa-
the breakdown field and the geometry of the breakdown clustions and the continuity equation, after neglecting all induc-

tive terms, we arrive at the following equation:
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where ¢ is the electrostatic potential. The discretization of
Eq. (2) on a square lattice leads to a lattice circuit of bonds
where each bond comprises a parallel combination of a re-
sistor and a capacitor. The capacitors are identical throughout
the lattice, whereas the resistors vary to represent local con-
ductivity [11,12.

We assume that the lattice consists of two types of bonds:
those with initial (prebreakdowh resistanceR and capaci-
tanceC and bonds with postbreakdown resistarite and
capacitanceC. The breakdown of resistdR occurs if the
local field exceeds unity for a breakdown delay tiffe The
breakdown delay tim&,, represents the time it takes for a
single element to fail. To reduce the number of independent
parameters, we now formulate the problem in terms of di-
mensionless parameters.

B. Rescaling of parameters
In calculations, the relevant dimensionless parameter is
the ratio of the postbreakdown to the prebreakdown element
impedance. The bond impedance before breakdown B (1/
+sC) '=R(1+sCR) ! [13], the impedance after break-
down becomeR,(1+sCR,) *. Therefore, the ratid" of

the postbreakdown to the prebreakdown bond impedance is
given by
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Perfectly conducting busbar

once e(t) > 1 for longer than T.

We note thas has units of 1/and thatCR is a time constant

- R, (1+3CR)
R(1+3CRy)

©)

of the lattice. So we use the following rescaling:

FIG. 1. A section of a semi-infinite lattice of resistors and ca-
pacitors. The resistors break down and their resistance changes
from 1 toR,, if the local electric fields on a borg(t) exceeds unity
for a time longer than the breakdown delay tifig

unit resistance and capacitance before breakdown, as is illus-
trated in Fig. 1.

1. Zero residual resistance

Ry -
Rb:g’ (43) In the limit of zero residual resistanég— 0, the limit of
ratioI" [in Eq. (3)] is zero. Since in this limit the capacitance
e is irrelevant, this is the same limit as the limit fB,— 0 in
S=3RC, (40 the quasistatic caseC(=0) that we have discussed earlier
[9].
1 o
t= —, (40 2. Infinite initial resistance
RC An important special case is the limit of infinite initial
and resistancdR— oo, which corresponds to breakdown in a me-
dia of infinite initial resistivity such as vacuum or an insu-
lating gas. In the limit of infinite initial resistanck, the
Ty rescaling in Eq(4) fails. So we apply the limit directly to
Th===- (4d)  Eq.(3) to obtain
b=EE q.(3
This rescaling leads to the form e 3CR, ©
1+3CRy
_Ru(1+9) 5 hich le using the residual i &
= {1+sR)’ (5)  which we rescale using the residual time constt
which corresponds to the impedance ratio for a circuit with s=3R,C, (79
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Perfectly conducting busbar

FIG. 3. An illustration of the parameters for a needle growing
: : : : : : on a semi-infinite lattice with an infinitely conducting busbar. In
e(t) 1 this example, the needle has length5 and began with a needle
-5 defect of initial length;=2. The notations for the three fieles,
e, , andey, at the bonds near the needle tip that may break down

T”— = next are shown.

1 neous evolution of the fields. In subsequent sections, we in-
once e(t) > 1 for longer than T. vestigate the behavior of needle defects as a function of these
time scales.
FIG. 2. A section of a semi-infinite lattice of capacitors corre-
sponding to a medium with infinite initial resistivity. In this case, Il. GENERAL RESULTS FOR NEEDLE DEFECTS
the capacitors break down and a resistance of 1 appears in series
with the capacitor if the local electric fields on a boed) exceeds We investigate the growth of a needle defect, consisting
unity for a time longer than the breakdown delay tifig of a line of defect bonds, aligned along the direction of the
applied fieldE in an otherwise homogeneous semi-infinite
i lattice. There are four independent parameters: the initial de-
t=—C, (7p)  fect lengthl,, the magnitude of the applied field, the
Ry breakdown delay tim&@},, and the residual resistan&y of
the defect bonds and subsequent broken bonds. Figure 3 il-
and lustrates the parameters for a needle propagating through a
semi-infinite medium.
T Our numerical simulation proceeds as follows. The initial
Ty=—. (70) needle of defect bonds along a vertical crystalline axis at the
pC perfectly conducting busbar is prepared. A uniform electric

field is applied to the lattice along the vertical crystalline

The rescaled quantities in E() correspond to a circuit with  axis. The field magnitude is determined by its value in a
unit capacitance and a breakdown resistance of unity akegion far from the defects. The field increases adiabatically,
shown in Fig. 2. that is, it varies very slowly in comparison to all other time

In the quasistatic case, the rafids identical in the limits ~ constants of the system. During the entire breakdown pro-
of zero residual resistivity and infinite initial resistivity. cess, the field magnitude varies infinitesimally.
Thus, the two limits are equivalent for the quasistatic case. All bonds where the local field exceeds the critical field,
However, the introduction of time dependence breaks thi¢aken to be unity, for a critical delay tim&, break down,
symmetry leading to a different behavior for these two lim-becoming defects and changing their resistance fromR,to
iting cases. irreversibly. The local fields are then recalculated as a func-
tion of time for the new configuration of defects and the
process is repeated.

We find that, depending on the parameters, the resulting

The effect of the rescaling in Sec. | B is to reduce theneedle growth exhibits a behavior that corresponds to one of
parameters of the lattice to dimensionless time scales. Thuthe three phases of the breakdown process, namely, insulat-
the case of infinite initial resistance has been parametrized hing, linear breakdown, or fractal breakdown, which we shall
a single time scald,, the breakdown time delay. The case discuss. If the applied field is too small to initiate break-
of finite initial resistance has been parametrized by two timadown, the lattice remains in the insulating phétere is no
scales, the breakdown time del@y and the time constant of connected path of defects across the lattides the field
the broken-down bon&,,. Note that althouglr, is the res- increases, it reaches a critical value, which we shall call the
caled residual resistance, it is also the rescaled time constainiitial breakdown fieldE;, which initiates the breakdown
RyC sinceC=1 after rescaling. The limit of zero residual and causes the needle defect to start growing across the lat-
resistance has no time scale and corresponds to an instantee. Subsequently, depending on the initial parameters, the

C. Time scales
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FIG. 4. Growth of breakdown clusters in vacuum for four different breakdown delay flip@s a semi-infinite lattice with an initial
defect of lengthy=1. The axes< andY denote the number of lattice spaces in each direction. The breakdown path consists of bonds that
break down at various times. For example, bonds intltérection generally break down before the nearby bonds irXtd@ection.

breakdown may grow linearly or with a fractal dimension. In Since the tip field increases ad,, the initial breakdown
addition, in some cases, oscillations in the breakdown profield E,; approaches zero 351’2_ For needles of nonzero
cess appear spontaneously. We discuss different phases ae@idual resistivityR,,, the tip fields saturates at a finite

stages of breakdown in Sec. Il B below. asymptotic value. In all cases, the tip field increases with
needle length, so that once the needle begins to grow, it
A Breakdown field cannot stop, i.e., the system is brittle. Thus, the final break-

] ) _ ] ) down field is equal to the initial breakdown field, i.&,
As the field is applied, the local field is generally the =Ep.

greatest at the tip of the needlef lengthl,) causing break-
down growth to begin there. This happens whe(E) =1

for longer thanT,. In the time-dependent case, the break-
down field depends on how the field is applied. If the field is We studied the path formed by the broken bonds. In the
ramped up slowly in comparison to all other time constantgjuasistatic case, the lattice can exist in three distinct states:
of the lattice, then the breakdown field is the same as in thésulating, linear breakdown, or fractal breakdown. We
quasistatic case. In the quasistatic case, all transients ha{@und a similar behavior in the time-dependent breakdown,
died out and the field distribution is determined by the analy-although bifurcation into fractal breakdown is inhibited for
sis of the resistors only and is independent of capacitors. I8mallerT, and oscillations can appear in the breakdown pro-

B. Breakdown path

this case, we previously fourf@] cess.
The needle begins to grow Bt=E,;. At first, the growth
0.218 consists of elongation of the needle so that the defect re-
e~E( 113221+ \/i) (83 mains one dimensiondllD), but for defects with low re-
0

sidual resistivity, the needle bifurcates as it grows longer,
growing fractally within a two-dimension&2D) wedge. Fig-
06 ure 4 shows growth patterns for four different breakdown
0.8\/TO+ ) (8b) delay timesT,. The slope of the graph in Fig. 5 gives the

e ~E
V2l fractal dimensionD of the patterns using the procedure of
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FIG. 5. Graph of the logarithm of the number of occupied boxes
vs the logarithm of the total number of boxes covering a square area
containing the breakdown clusté, is the size of the initial defect
in units of lattice spacingT,, is the breakdown delay time. o T T T
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counting the number of filled boxes at various length scales
[14,15. The pattern starts linear but crosses over to fractal.
Excluding finite lattice effects, the four patterns tend to ex-
hibit a fractal dimensioD =1.71+0.03. The fractal dimen-
sion in this case is consistent with that for the quasistatic /M/]/VWV]/VWWWWWWVWWWWWZ;W
case wherd=1.722+0.018[9].
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As Ry, increases off, decreases, the onset of the fractal .,
(2D). growth_loccurs at Ic.)nge.r. neledlclas ar;dhreqwr%s rr|10re_|t- FIG. 6. The evolution of the tip fields of a needle as a function
erations untll, at a certain critical va _ue of the residua reSISHt time for variousT,, andly=1. The time evolution is shown up to
tanceR, and the breakdown delay timk,, the growth re-  he time of bifurcation, except foF,=0 where bifurcation does not
mains purely one dimensional and the needle nevepccur.

bifurcates.

Although the breakdown paths for the quasistatic and powever, in the time-dependent case investigated here,

time-dependent simulation are similar, there are several dife needle propagation exhibits a complex behavior that de-
ferences. In the time-dependent case, the fractal spreadifgs sych a simple description. We identified several phases
does not start until a longer needle is realized. Also, thg the propagation using a numerical simulation of the time
initial bifurcation for the time-dependent case involves ver-gyoution of the fields. We describe the results of numerical

tical bonds only, whereas in the quasistatic case it involvegjmylation of breakdown for lattices of infinite initial resis-
the horizontal bonds. Note that Fig. 4 does not show thgjyity in Sec. IIl and the results for lattices of finite initial

temporal order in which the bonds break down. The bifurcayegistivity in Sec. IV. We describe the algorithm used to com-
tion begins with vertical bonds in all the clusters shown.  ,te these fields in Appendix A 1.

To understand the behavior of needle defects and the on-
set of bifurcation, we analyzed needle propagation to inves-
tigate the fields near the needle for various cases of initial
and residual resistivity. Recall from R¢f] that propagation
of the needle in the quasistatic case proceeds in a simple The case of a lattice composed of bonds with infinite ini-
manner. The fields near the tip increase uniformly as theial resistance(media with infinite initial resistivity is an
needle advances. As the tip fields increase, one or morienportant practical case and also provides us with the under-
bonds at the tip of the needle break down for each step. Thstanding necessary for the case of nonzero initial resistivity.
number of bonds breaking down in each step increases unide assume that the applied field increases slowly in com-
formly. The tip fields and the number of bonds that breakparison to all time constants of the system. As the field
down in each step reach an asymptotic value for nonRgro reaches unity, breakdown of the first bond at the tip occurs
or increase without limit in accordance with E&) for zero  after a breakdown delay timg, . The field then builds up on
Rp. the second bond. After the field reaches unity on this bond at

IIl. RESULTS FOR LATTICES OF INFINITE
INITIAL RESISTIVITY
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FIG. 8. The velocity of needle propagationts{l), as a func-
tion of needle length for various breakdown delay timel, and
. e I L initial needle lengthy=1. The horizontal dashed line represents
7 AABAONALAAS 0 L ] . . . . . . .
o velocity equal to IT,. The oscillations begin as this velocity is
1f r reached. The needle is allowed to bifurcate. The vertical dot-dashed
| line indicates where the onset of bifurcation occurs and gives the
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o 20 40 60 80 subsequent sudden broadening to a wider breakdown wedge.
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FIG. 7. The velocity of needle propagationt /), as a func-
tion of needle length for various breakdown delay timél, and

Velocity
1
!

bifurcate. This initiates the “fractal” phase of needle growth.
Figure 6 shows several examples of the time evolution of
initial needle lengtH,=1. The horizontal dashed line represents athe tip fields. Large fluctuations in the field appear aftgr each
velocity equal to IT,. The oscillations begin as this velocity is breakdown.as_the needle advances and the Obs_ervatlon b.ond
reached. The velocity plot extends beyond the point of bifurcation¥here the tip fields are measured moves accordingly, causing
but the bifurcation has been inhibited in this simulation in order to@ discontinuity in the tip field. The interval between the dis-
view the velocity of the propagating needle. The vertical dot-dashegontinuous jumps on the figure is the duration of each needle

line indicates where the onset of bifurcation would have been. ~ Step which is the inverse of the velocity of needle propaga-
tion. We can see pronounced oscillations in the step dura-

the tip, breakdown occurs again after breakdown ddlgy tions and the terminal values of the tip field for each step at
This process continues as the needle grows. If the value df,=100 and less noticeable oscillationsTgt=10. Oscilla-

Ty is small, the field at the tip does not have time to increaséions atT,=2 occur also, but are not as obvious. Also, we
much beyond unity. However, the velocity of propagationsee that the field®; ande, show a greater discontinuity
increases uniformly with needle length. T, is large, the compared tcej,. The reason is that ande, receive their
fields can reach their quasistatic values. However, as thgreatest charge contribution from the end bond, whjle
needle propagates, more and more charge gets transferedrézeives a small contribution from the end bond, since it is
the bonds further away from the needle. The fields at thesalmost parallel to the dipole charge on the end bond. This
bonds reach unity earlier, so that the delay for each stepffect causes the bifurcation to be initiated entirely among
becomes smaller thah,. At this point, the needle sprints bonds parallel to the direction of needle propagation. In the
through a section of the lattice. After several quick stepsjuasistatic case, bifurcation began at the perpendicular tip
through the lattice, the charge transferred ahead of the needb®nds. However, in the time-dependent case, the effect of
is exhausted and a longer delay occurs. Thus, the velocity direakdown of the end bond is to reverse the field on the
needle propagation and the tip fields oscillate. We call thigoerpendicular bond. This effect @, is weak. Thusg, can
phase high velocity propagation with oscillations. As theremain above unity longer as the needle propagates past a
needle propagates, the fiedgh, can reach unity also and re- bond causing it to initiate the bifurcation.

main above unity sufficiently long to cause the needle to Figures 7 and 8 show several examples of the needle ve-
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FIG. 9. The normalized time to breakdows, for a field at a
bond parallel to the needle tip as a function of needle lehgthd
breakdown delay tim@&,, for [,=1. The corrugations are caused by
oscillations.

locity as it propagates. We define needle velocity as an in-
verse of the time duration of each stgp Naively, we might
expect that the velocity cannot exceed i/ since a bond
has to wait for this time before it can break down. However,
we see that the velocity increases uniformly until it reaches
1/T,, (the dotted ling At this point, we can see the onset of
high-velocity propagation and the velocity oscillations due to
precharging effects. We observe that since the system is ho-
mogeneous, these oscillations arise from the intrinsic prop-
erties of needle propagation rather than from disorder in the ) 20 40 60 80 100
system. Also, there is an increase in the period of oscillations T,
at the point of bifurcation. There are no oscillations when
there is no breakdown delay &;=0.

The approach of the needles to the bifurcation length ¢
be expressed succinctly by considering a “normalized tim

to breakdown,"t,, which is the ratio of the time a poten- the virtue that bifurcation occurs if this quantity reaches
tially bifurcating bond spends at a local field greater thanynity, analogous to the local electric field in the quasistatic
unity e,=1 to the breakdown delay time. This quantity hascase. The difference is that the quantity has a discontinuous
derivative at zero due to the nonlinear nature of the underly-
ing formula. The quantity becomes nonzero at a length con-
sistent with our previous quasistatic results. Algpexperi-
ences small oscillations as it increases due to the oscillations
in time steps. These oscillations lead to oscillations in the
bifurcation phase diagrams. Figures 9 and 10 showtghe
surface. The oscillations ity, appear as corrugations in the
surface.

Figure 11 shows the resulting phase diagram of needle
propagation at the initial critical field. The three phases are
clear, but the complexity and the richness of the needle
propagation in the time-dependent problem is difficult to ex-
plain in simple terms. In the following section, we describe a
simplified recursive map approximation that reproduces the
essential qualitative behavior of the needle and allows us to
understand the physical causes of this behavior.

FIG. 11. The phase diagram of different phases of needle growth
artPr three initial needle lengths. The phases are low-velocity needle
é)ropagation, high velocity with oscillations, and bifurcation.

FIG. 10. The normalized time to breakdowy, for a field at a
bond parallel to the needle tip as a function of needle lehgthd
breakdown delay tim&, for |,=3. The corrugations are caused by ~ The complex behavior of the propagating needle in the
oscillations. time-dependent problem defies the very simple explanation

Approximation using a recursive map
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available for the quasistatic model. In this section, we pro- TABLE I. Coefficients for a linear approximation to time con-
vide a simplified model to help explain this behavior. stants— 1/a,, for the first ten eigenvalues.
Our model uses a recursive map approximatiRMA) to

evaluate the tip fields. This RMA uses the eigenvalue decom- p ap by
position in Appendix A 1. To construct the RMA, we observe 1 0.777 1.724
the weight of the ground state eigenvalue as the needle 2 0'433 0'457
propagates. The ground state dominates if the needle propa- ' '
. . . . b 3 0.446 0.261
gates fast. The reason is that there is a limited time to dis- 4 0.489 0.180
charge the needle bonds, so the charge is fairly uniform and 5 0'535 Ol136
similar to the ground state. If the breakdown delay time is ' '
very large and the needle propagates slowly, the charge dis- 6 0578 0.108
sipates completely at each step and appearssdsiaction at 7 0.618 0.089
the new tip bond after breakdown. We recall from the analy- 8 0.655 0.075
9 0.689 0.065

sis of the eigenstates in Appendix A 1, thag-function wave

packet decays approximately exponentially with time. In the 10 0.720 0.056

intermediate propagation regime, the true needle state can be

approximated as some mixture of a ground state and a

S-function at the tip. the functionZ and the time evolution of the voltages of the
Based on the foregoing observations, we constructed Beedle state were known, it would be possible to solve for

summation using the results from the quasistatic case for they, + 1 that becomes (t) oncek=1. Then we could find the

field enhancement multiplied by exponential decay factorstime when this field has exceeded unity for a period greater

We use two decay factors, one for the ground state and orfdanTy,, thus initiating the next breakdown and causing the

for the & function at the tip. We use a simple expression toneedle to reach the length-1. As the needle reaches the

estimate the weight of the ground state and assign the rest tgngth |1 +1, the chargeq,.; is equal to the tip field

the charge to the function at the tip. This approximation €,(t;+1). Thus, the complete state of the new needle of

qualitatively describes the effects we have seen in the simuengthl+1 is known from the state of the previous needle,

lations. just at the moment of breakdown and the value of the tip
Using this decomposition, we construct the RMA as fol-field. This can be expressed by a recursive map

lows. Let us assume that we are interested in a tip field

g),i(t) of a needle of length from the moment the needle

reaches this length until subsequent breakdown at this tip. {[d1- - 0i+1)(0), Ty abe—{|as- - A)(0), Tbk=1, .. ;-

Before the needle becomésonds long, it must progress (10
through lengthdy throughl. We will label each of these
intermediate needle lengths kyl ;<k<I. The time interval The recursive map in E¢10) can be evaluated exactly by

between the breakdown that caused the needle to rea@xpressing a needle state in orthogonal eigenfunctions.
lengthk and the breakdown that causes the needle to reachppendix A describes an algorithm to compute the eigen-
lengthk+1 is Ty, i.e., the needle spends a timigat length ~ functions and the electric-field enhancement functi&n
k. The state of the needle of lengkhat any timet, is de-  Another useful representation of each state is in terms of
scribed completely by the local electric field at each of its* §-function” states where each state consists of a needle
bonds that we will label by the indgx1<j=<k. For a lattice  having a unit charge on boridand zero charge elsewhere.
of capacitors, the local field is equal to the charge on the To complete our RMA, we assume that the needle state is
capacitor at the bong; , so we can write the full state of the a superposition of two nonorthogonal states. One state is a
needle of length k, using the bra-ket notation, as state of uniform charge distribution on a needle of lerigth
[a1- - - g (t). denoted by|k,0), which approximates the lowest-order
The tip bond for a needle of lengthis at position &,y) (ground eigenstate. The other state is a state with a
=(0/+1). It does not have a significance as the tip bonds-function charge distribution at the tip denoted fy1),
though, until the needle reaches lendthAs the needle where the charge is unity at the tip and zero elsewhere.
propagates toward lengththis tip fieldey, | receives current The lowest-order state decays as exp(t) with «; given
and hence field contribution from each stage of the needlby Eg. (B3) and coefficients of Table | as-1/a(k)
growth. In principle, the field can be expressed as a summa=0.777+ 1.724. The tip §-function state decays approxi-
tion of contributions of each needle stage mately as exp-t‘®/7], with 7~2.75 and u(k)~0.8
+ 0.2k 2 according to Fig. 24. As shown in the Appendix, if
| the charge decays exponentially from the needle, the field at
_ any other bond increases exponentially proportional1to
Cor+) E0+k21 Zllay - a0 (0.1 +14d, © —exfd —ay(K)t]) for state|k,0) and ag 1—exp(—t“®/7)] for
state|k, 1).
where tk=2,‘§:1Tp, and Z is a numerically computable We can calculate the electric-field enhancement function
function relating a particular state of the neeftje- - - q,) of ~ Z for these two states from the analysis of the quasistatic
lengthk to its field contribution at a bond at point (P, If ~ cases reported in Ref9]. For both statesZ(|k,0),n) is
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calculation using the Green’s function algorithisolid lines and
the RMA (dashed linesfor three different delay time$,, andl,
=1.
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FIG. 13. A comparison of the onset of bifurcation as a function
of T, for [,=1 as given by the calculation using the Green'’s func-
tion algorithm(upper curve and the RMA(lower curve.

k-1 (120

go=1—x+
and

9:=1-0o. (129
Figure 12 shows the comparison of the tip field between
the simulation using the essentially exact calculation using
the Green’s function algorithm and the RMA. The figures
show that the agreement is especially good at limiting values
of T, where the charge distribution is nearly uniform or
nearly aé function. The agreement is less good at interme-
diate values ofT,, where other charge distributions contrib-
ute. The same calculation also predicts the other tip fields.
Thus, the RMA predicts the onset of bifurcation as well as

simply the differential quasistatic field enhancement for ayiher complex needle behaviors. Figure 13 shows the com-

needle of length on a resistive lattice. Thus, the field be-
comes

|
€0y +1(t) = Eo+k§l 9o(k) Z(|k,0),1 +1)

X{1—exd —ay(t—t )]}

|
+k§=‘,l 9:1(K) Z(|k,1),1+1)
x{1—exfg — (t—t )/ 7]}, 11

wheregy and g, are the weights of the two states, respec-

parison of the RMA against the Green’s function simulation
for calculation of the bifurcation phase diagram. There is a
qualitative agreement, although there is a small difference in
the bifurcation length.

IV. RESULTS FOR LATTICES OF FINITE
INITIAL RESISTIVITY

We extend the results of Sec. Ill to the lattice model with
bonds having a finite initial resistance shown in Fig. 1. We
derive the Green’s function algorithm in Appendix A 3, and
show in the Appendix that the field evolves as in the case of
infinite initial resistivity, except that the relevant time con-
stantsg3, are given by

tively. We approximate the weights by an average of the

charges over all bonds as follows:

— (€ k-1 € k2EXP(—Tp/7)]

- (129

_ap(l—Rb)+Rb

R, (13

p

For smallR,, we haveg,~a,/R,. In Fig. 14, we plot
from the numerical simulations the time evolution of the tip
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Time/R, FIG. 15. The velocity of needle propagationt (), as a func-
tion of needle length for various residual resistancég, at T,
=2R, and initial needle lengthy=1 from the simulations. The
horizontal dashed line represents a velocity equal ¢ 1The os-
cillations begin as this velocity is reached. The vertical dotted-
dashed line indicates where the onset of bifurcation would have
been. The velocity plot extends beyond the point of bifurcation, but
the bifurcation has been inhibited in this simulation in order to view
the velocity of the propagating needle.

FIG. 14. The evolution of the parallel tip fiel of a needle as
a function of time for variou®y,, for T,=0 orT,=100R,, and for
lo=1 as given by the simulations. The time evolution is plotted up
to the time of bifurcation, except far,=0 andR,=0.04(top three
curves where bifurcation does not occur. The horizontal axis is the
ratio of time toRy, .

fields at limiting values off,=0 andT,= 100R, for various
Rp. The horizontal axis is the ratio of time ov&,. The We can see the oscillations clearly by plotting the speed
scaling withRy, is seen in these graphs for smRY. If we  of the needle propagation as a function of needle length, as
defineT,=T,/R, asR,—0, the system with a finite initial shown in Figs. 15-17.
resistivity behaves like the system with infinite initial resis-  As we did for infinite initial resistivity, we can construct
tivity with an breakdown delay timé&}, . phase diagrams for differefiy,. Figure 18 shows phase dia-
As R, increases, the quasistatic field enhancement degrams for severdR;,. We can see that while all cases exhibit
creases as described in RE]. This effect causes the scal- oscillations, the bifurcation phase does not appear at suffi-
ing to fail because the charge ahead of the needle tip does neiently highR,.
build up as quickly. Referend®] shows that eventually the We studied the length,; that the needles reaches prior to
bifurcation is suppressed in the quasistatic case. A similathe bifurcation for largeT,, as a function ofR, for the first
suppression of hifurcation occurs in the time-dependent caséhree initial needle lengthly. Figure 19 shows the results.
We see from Fig. 14, which gives vs time from the simu- This curve is similar to the curve df; vs |, for the quasi-
lations, that the bifurcation length increases and then the bistatic case of Ref[9]. However, the curve was based on
furcation ceases to occur for the lengths studied. The oscibifurcation at the perpendicular adjacent bond. As we ex-
lations remain, but become regular as the model settles intofelained in Sec. I, the bifurcation in the time-dependent case
limit cycle. occurs on the adjacent parallel bonds. Thus, we comgyted
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FIG. 16. The velocity of needle propagation{ /) as a func- FIG. 17. The velocity of needle propagationt ll) as a func-

tion of needle lengtH for various residual resistancég, at T, tion of needle lengtH for various residual resistancég, at T,
=10R, and initial needle lengthy=1. The horizontal dashed line =100R, and initial needle length,=1. The horizontal dashed line
represents a velocity equal toTL/. The oscillations begin as this represents a velocity equal toTL/. The oscillations begin as this
velocity is reached. The vertical dot-dashed line indicates where theelocity is reached. The vertical dot-dashed line indicates where the
onset of bifurcation would have been. The velocity plot extendsonset of bifurcation would have been. The velocity plot extends
beyond the point of bifurcation, but the bifurcation has been inhib-beyond the point of bifurcation, but the bifurcation has been inhib-
ited in this simulation in order to view the velocity of the propagat- ited in this simulation in order to view the velocity of the propagat-
ing needle. ing needle.

vs R, for the quasistatic case for bifurcation on the paralle/2nd 0-015. Figure 19 shows these power-law lines also. The

bond. Figure 19 shows this result as well. resulting fits are good in the limit of large, .
We observe that aR,, approaches a critical vall®,,.. , |,
diverges for both quasistatic and time-dependent cases. We V. CONCLUSION

fit these data points to a power law of the form We investigated the time evolution and geometry of

breakdown paths in time-dependent networks of capacitors
and resistors under slowly increasing external fields. We in-
I5i= (Rpi—Rp) % (14  vestigated two classes of lattices, lattices with an elements
with infinite initial resistancgpurely capacitive lattices be-
fore breakdowp and lattices with elements having a finite
The quasistatic curves approach the critical values with exinitial resistance. For the lattices with infinite initial resis-
ponenta~0.82-0.01. The critical valueRR,.. are 0.13, tance, the speed of breakdown can be represented by a single
0.06, and 0.039 fok, of 1, 2, and 3, respectively. The time- time scale which we call the breakdown time delay. For lat-
dependent points approach the critical values with exponernices with both capacitors and resistors before breakdown,
a~0.88+0.01. The critical value®,;,, are~0.047, 0.023, there are two relevant time scales, namely, the breakdown
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FIG. 18. The phase diagram of a different phase of needle FIG. 19. Needle length at bifurcatidp; as a function oRR;, at
growth f0r|0: 1 and Severa‘]’b . The phases are low velocity, high three values of the initial needle Iengthfor a quasistatic case with
velocity with subsequent oscillations, and bifurcation. bifurcation at an adjacent parallel bofidwer curve, andly,; as a

function of Ry, for a time-dependent case Bj=100R,,. The length

. . I, andly; are in units of lattice spacing. The discrete points on the
time delay and the time constant of the bond after breaky ot are from the simulations and the solid lines are power-law

down. approximations with exponents of 0.88.01 for the quasistatic
We observe that if the local breakdown is slow comparectase and 0.880.01 for for the time-dependent case. The dashed

to the evolution of the local field, there is a qualitative agree-ines are the critical values whetg—« for each curve.

ment with the results of the quasistatic case. If the local

breakdown is rapid, the system never reaches the quasistafifs|eciric strength of a material may be inferred in a nonde-

situation. o _ structive way from the frequency behavior of the material.
Unlike the quasistatic case where the velocity of defect

propagation increases monotonically with needle length due

to the increase in the local tip field, the dynamical model APPENDIX A: ALGORITHM

indicates the onset of oscillations as fields build up and re- )

lease. The oscillations that spontaneously occur are reminis- 1. General formulation

cent of those that occur in the brittle fractyte5—-18. We wish to calculate the electric field due todefect

The behavior of this model is rich and there are severabonds, labeled 1 through in an otherwise uniform, infinite,
promising areas for further study. One such area is the incoperfect square lattice. The basis for the algorithm used to
poration of a more realistic model for variable time to break-calculate the time evolution of the fields is the algorithm that
down as a function of local field-based physics of break-has been used previously to determine the field distribution
down. for a resistive lattice with defects. The basis for both algo-

Another interesting possibility arises from the fact that arithms is the Green'’s function solution for the potential due
disordered lattice exhibits frequency-dependent conductivityo a constant unit current source into a site of an infinite
even though all local properties are frequency independergquare lattice of resistors. We show the development of the
[11]. Since the dielectric strength of the lattice depends oralgorithm, repeating certain steps used to develop the earlier
the amount of disorder, there is an intriguing possibility thatalgorithm for the purely resistive lattice.
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FIG. 20. The infinite lattice network of capacitors withdefect bondga), the equivalenn-port network(b), and an explicit represen-
tation of an equivalent single-port netwo®).

The main consideration for the development of the algo-or in matrix form
rithm is to treat the lattice in the frequendiLaplace-
transform) domain. This allows us to view bonds as imped- _
ances and to manipulate them in a manner analogous to that &(s)=E(s) +[i(s) +.A4]12"(s), (A2)
used previously for the purely resistive lattice. . i

Consider the impedance of each defect bond. We can Coryyh_ereA is a vector of constants chosen to obtain the correct
sider each defect impedance as comprising a parallel combifitial open-circuit voltage value.
nation of the lattice impedan@and an additional resistance  In electrical-circuit theoryE(s) and Z(s) are known as
selected so their parallel combination equajs Also, we  Thevenin equivalent voltages and impedances. ABQ,are
can consider each nearest-neighbor néslee) pair of the called the driving-point and transfer impedances, they are
perfect lattice as terminals of an arbitrary two-terminal linearequal to the voltage developed at ppshen a unit current
passive electromagnetic system that can be represented by source is applied to pok
equivalent linear electrical circuit. We call such pair of ter- The impedance can be found by calculating the voltage
minals a port. Thus, we can associate a port with each bondiue to two unit current sources of opposite polarity attached
As the lattice consists of resistors and capacitors that argt the nodes, namely, a dipole source. The solution for this

linear in fields, the equivalemtport circuit is linear in fields  impedance matrix for a lattice of unit resistors, which we call

and obeys the superposition principle. If there are defects iQVatson’s matrix A, was developed in a previous wofg]

the lattice, we represent them as resistors connected to th , . .
ports corresponding to the defect bonds. In addition, therelz)%.sed on the Green’s function calculation of \_/oltage due to a
nit current source for a perfect square lattice network by

are transients due to initial conditions across the capacitor . o )
P atson[19]. A calculation similar to that of Watson with a

It is possible to represent an initial voltag€¢0~) across a L . . )
capacitorC in the Laplace domain as current sources of val-generalization tal d imensions has been shown in R&0].

uesCv(07) in parallel with the capacitor. Thus, we place a

current source at each port of the equivalent circuit to repre- 2. Formulation with infinite initial resistance

sent the initial conditions. If the effect of transients and de- | the case of infinite initial resistance, the impedance of
fects is represented by external elements, the open-circUf, ,nbroken bond is &/ A parallel resistanceR,=1 is

voltage at each port is equal to the applied fiél(s) by  added to create breakdown. Impedances can be treated as

symmetry. For a field applied along the vertical directions resjstances, and an equivalent circuit can be constructed for

the port voltageE; is zero for a port at a horizontal bond and the |attice. Figure 20 shows the lattice and the equivalent

equal toE(t) for a port corresponding to a vertical bond.  n port circuit. This figure also shows an example of a single-
Thus, the voltage of an-port circuit can be calculated by port circuit with explicit representation for the equivalent

a linear superposition of voltages produced by the currenglements. The equivalentport circuit with the external cur-

into each port, with proportionality constanZ;, and the  rent sources that represent initial conditions has the terminal

open-circuit voltage at each pagt, voltage-current relationship given by
k=n 1
ej(s)=Ej(s)+k§=‘,l [i(s)+ Akl Zj(s) (A1) e(s)=E(s)+[i(s)+.A] E/T). (A3)
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Solving for the current initial voltage across the bond. This compact expression is
possible only for the network with an infinite initial resis-
— tance.
se(s) =sE(s) +[i(s) +.A]A (A4) Again, the resulting current divides among the lattice el-
, ements just as in the resistive case. The figlds well as the
or, equivalently, voltage at the capacitor of bon# is the sum of the time
integral of the current into the element and the initial

d d o voltage into the elemerg,(0),
—e(t)= = E(t)+[i(t)+.A8(1)]A, (A5)
dt dt
t
where §(t) is the Dirac-delta function. ek(t)zf i(t")dt' +e(0). (A12)
0

When breakdown occurs, a parallel resistance of unity
appears in parallel with the port of the circuit. The voltage-

current relationship for the resistance in the time domain isAtL the moment of the first breakdown, the initial field is just

the applied field so tha#, (0)=E.
We will label by a;y the fraction of the current driven by

e(t)=—i(t). (AB) sourcej into the bondk. The total current into a bond is a
sum of contribution of the fraction for each defect, so the
Thus, we obtain an overall equation field is
9, —dE +A[i(t)+.AS A7 o[
&l(t)_m (t) [|(t) (t)] ( ) ek(t):jzl Joajkij(t/)dt/_l—ek(o)- (A13)

The formal solution is . .
We separate the field at each bond into the vector component

of the applied fieldE(t), and the enhancement field due to

— the defects in the lattice. The enhancement field is given by
exp(Ap)dp the summation oven defect bonds in EqA13). This equa-

tion shows that the enhancement field is zero if the applied

_ rt d _ _ field is constant. Any enhancement results from the initial

= —exp(—At)fwd—pE(p)exp(Ap)dpﬂL Aexp(—At).  charge configuration and the time evolution of the applied
field, for example, the adiabatic increase in the field to reach

(A8)  a constant value.

. e t d
i(t)= —exp(—At)de—pE(p)JrAts(p)

We assume that breakdown occur$-aD. Equation(A8)
is valid for the circuit after breakdown only. This corre-
sponds to viewing the fieldE(t) as being turned on at Consider the impedance of a defect bond. We can con-
=0. If the applied field is constant, the source terms becoméider it as a parallel combination of the lattice impedadce
and an effective resistand®’, as shown in Fig. 21. The
lattice impedance is a parallel combination of unit capaci-

3. Formulation with finite initial resistance

E(t)=EU(1), (A98)  tance and unit resistance,
d Z(s)= ! Al4
JiE(W=Ea(), (A9Db) (8)=175 (A14)
whereU (t) is the Heaviside step function. Then, the solutionWe select the effective resistan@eé so that its parallel com-
becomes bination with unit resistance Ry,
o = Y R
i(t)=Eexp —At) + . Aexp —At). (A10) R — ] kl):{ ' (A15)
~Rp
If we let iy be the vector of initial currents, we can express . o — -
the solution as Thus, the impedance matrix is given B(s)=Z(s)A
=A/(1+s).
o We combine all the terms to obtain
i(t)=igexp —At). (Al1)
This expression allows us to express the current evolution _ : 1 -
entirely in terms of the initial current, which is equal to the &(s)=E(s) Li(s) + Al 1+sA ' (AL6)
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FIG. 21. The infinite lattice network of impedances witlhlefect bondga), the equivalennh-port network(b), and an explicit represen-
tation of an equivalent single-port netwo®).

Solving for the current, we find

d. 1 d _ _
—&u(t)_E E(t)+ L E()+AAS(1) | +Bi(1).
(1+s)e(s)=(1+9)E(s)+[i(s)+.AJA.  (A17) (A22)

We define A’ =(A/R’).A. Then, the formal solution for

We transform back to time domain to obtain the differential, . h
this system is

equation

) — [t — d dp
E(t)‘f‘[l(t)‘f‘A&(t)]K |(t):_exﬂ_5t)Jmequp){E(p)‘l‘d—pE(p)}E
(A18)

l+d
dt

_( d
e(t)= 1+&

+ A’ exp(Bt). (A23)

When breakdown occurs, a parallel impedafeis at-
tached to the port of the equivalent circuit. Its voltage-
current relationship is given by Ohm’s law

We letiy be the vector of initial conditions. In the special
case that the applied field is constaa(t) = U(t)E, the so-
lution is

e(t)=—R'i(1). (A19) |- Aexp—Bt)
i(t)=—(A+R'l)"* |+—R, E

Thus, we obtain

+

E _

d d E_io) expBt). (A24)

—R’ai(t)=(1+ a) E(t)+(A+R'Di(t)+AAS(L).

(A20) We note that the initial current is equal to the open-circuit
voltage at the time of breakdowa?°(0) divided by the ad-
ditional resistanceR’. The open-circuit voltage cannot
change discontinuously because it is a voltage across a ca-
pacitor, while the current through the additional resistors can
jump abruptly. We can simplify Eq(A24) to obtain

We define the matriB as

— A+R’I
B= . (A21)
RI
_ — 0
) i(t)=—[1—exp—Bt)](A+R’l) "E— exp(Bt).
Then, the equation for the current can be expressed as a R’
matrix differential equation (A25)
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FIG. 22. Eigenvectorfn,p) and their associated time constantaLfor needles of up to six bonds.

This expression has the expected form of a sum of aived expressions for time-dependent solutions in Appen-
steady-state solution that is identical to the solution obtainedixes A1 and A 2. These expressions involve exponentiation
for the resistive casf9], a transient solution, and a decaying of matrices and can be evaluated by various techniques. One
term due to initial conditions. approach that provides considerable insight into the nature of

The resulting current divides among the lattice elementshe solution is the eigenvalue decomposition.
just as in the resistive case. The local field is the voltage
across each resistor, which is equal to the current through 1. Infinite initial resistance
each resistor.

The differential equation for each circuit element is First, we look at the solution with infinite initial resis-

tance. The numerical procedure for calculating Watson’s ma-

trix A is given in Ref[9]. To understand the behavior of the
(A26) solution, we express the initial state of fields across each
needle bondn)(t=0), wheren is the needle length, as a

sum of eigenvector$n,p) of A, wherep=1,...n. Note
that the field across a bond is a state variable, i.e., it cannot
change instantaneously. Each eigenvector has a correspond-
1 1 ing eigenvalue- «,,. The initial current across each bond is
1rs  13sC0 (A27)  equal to the initial voltage and the initial charge, since both
the capacitance and parallel resistance are equal to unity.
Thus, we can consider each eigenvalue as belonging to a
state with a lifetime 1.
Once the eigenvalues are determined, the time evolution
Lo ) of charges on the needle depends on the initial conditions
e=E(+ fo'(t Jexp(—t+t)dt’ e~ E(0)Jexp —1). and their decomposition into the eigenvectors. Cgtbe the
(A28)  weight C,=(n,p|n)(t=0) of each eigenvectdm,p) in a
particular initial state|n)(t=0). Then Eq.(A11l) decom-

d .
e(t)+ ae(t)zl(t),

wheree(t) is the field across the bond. Its transform is

e(s)=i(s)

Thus, the solution for the node voltage becomes

APPENDIX B: THE STRUCTURE OF TIME-DEPENDENT poses as
SOLUTIONS FOR A NEEDLE DEFECT
n
Understanding the fields arising from a needle is impor- i(t)=|n)(t)= 2 C,|n,pYexp — apt). (B1)
tant for understanding the initiation of breakdown. We de- =1 P P
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Approximation by a closed form expression
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FIG. 24. The time evolution of the tip field| for a needle of
FIG. 23. Time constants &/, for eigenvalues of a given order length 1=1=43 with an initial charge of unity on the last bond and

vs needle length. no charge on the remainder of the needéfinction response
The discrete points represent the calculation using the expansion in
The final result for the enhancement field becomes eigenvectors computed with the Green’s function algoritliq.

(B2)]. The surface hatched with solid lines is the closed-form ap-
proximation(Eq. (B4)].

n t n
ek“):;l Jwaikpzl CoXpjexp( —apt’)dt v(N[1—exp(=1t"Y/7)]. The coefficienv (1) is the asymptotic
field enhancement. It is equal to the value obtained for the
L e l—exp—apt) quasistatic case for a single defect on a semi-infinite lattice.
:;l & a—pajkcpxpj ' (B2)  Thus, it takes on its largest value 0.5 fer 1 and approaches

0.36 for largd. The time constant is 2.75 forl =1 from our

wherex,; is the element of the eigenvectojn,p). Note that calculations of eigenvectors with results shown in Fig. 22.

parameters in this equation can be calculated from Watson'é/e notice that as increases, the time variation of the tip
coefficients for the resistive lattice. field flattens. This is likely due to the asymptotic behavior of

The eigenvector$n,p) can be arranged in the order of the eigenvalues for long needles that are likely to dominate
decreasing eigenvalues or, equivalently, in the order of inthe behavior ofs functions. The deviation from exponential

creasing time constant df. Figure 22 shows the set of behavior is likely due to a few long-lived low-order states.

complete eigenvalues and eigenvectors for short needles. TH¥E approxmaEeZ this as a power law in the exponent as
most symmetrical longest wavelength eigenvectors have thg(1)~0.8+0.2 "7, with the exponent dependence obtained
largest time constant. Figure 23 shows the dependence of tH™M & curve fit. The resulting approximation in the form of

time constant on the needle length. The plot shows that the

time constant is linearly proportional to the needle lerigth 014 1(08+0.24%)
62(0.364‘ T) X‘l—ex;{—W” (B4)

fits the calculated values well as can be seen in Fig. 24.
Table | shows the values of these coefficients for the first ten

eigenvalues. 2. Nonzero residual resistivity

Uay(l)=a,+b,l. (B3)

Dependence on the initial conditions The solution for nonzero residual resistivity, given in Eq.
. L . , (A25), consists of a homogeneous part that is identical to the
The coefficient<,, depend on initial conditions. Two im- o) ion for the resistive case, and a transient part that has a
portant limiting cases are a uniform initial charge d|str|but|onf0rm similar to that for a time-dependent case of the zero
or a ¢ function distribution where the last bond has unit egjqyq] resistivity. If we focus on the transient part, we can
charge and all other charges are zero. We considersthe apply the eigenvalue decomposition as we did in Appendix .

function distribution in detail. : e :
The tip fields produced by thé functions can be com- we attemm to use propert_les of the matAxto illuminate
the properties of the matrils.

puted by expanding thé function in terms of the eigenvec- T .
tors and computing the resulting field dependence. Figure 24 We recall thaB=(A+R'l)/R’. We label eigenvalues of
shows the time dependence of the field for the increasin@ by B, and the corresponding eigenvectors|byp) with

needle length. We try to approximate this behavior agshe dependence dR, implicit. From the definition of eigen-
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valuesB— B1=0, we see thaty,=R’+ B,R’, so that ex(t) =ex(0)exp(—t)

n n

exp(—t) —exp(— Bpt)
ap+R’ 2, 2, aiCoXp, 6.1
Bo=— (B5) = P
n n
exp( — Bpt) B ,Bpexli —t)
The eigenvectors corresponding to each eigenvalue are the +j21 pzfl ajkDpXpj| 1+ Bp—1 ’
same as for the case of infinite initial resistivity.
We determine the time evolution as in the case of infinite (B7)

initial resistivity. We note that the staté\@¢ R’l) ~1E is the
state ag approachese, which is also a solution of the qua- wherex,; is the elemenf of the eigenvectofn,p). Again,
sistatic(purely resistivg¢ case. We label this state by)(=).  parameters in this equation can be calculated from Watson’s
Equation(A25) decomposes as coefficients for the resistive lattice. Also, this equation shows
that all transient fields decay eventually leaving only the
n steady-state solutiotresistive lattice
i(t)=>, Doln,p)[1—exp(— Byt)] In the limiting case of zero residual resistivif,— % so
p=1 that the enhancement field becomes

+le Cpln,pyexp— B,t), (B6)

n
— ao0C —t)— )
where the coefficients areC,=(n,p/n)(0), and D, et =e"(t) +e(0)exp—1) ,Zl Ak

=(n,p|n)(«). The final result for the enhancement field be-

comes X ((n,j|A71e%n,j)[1—exp—t)]. (B8)
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